Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2310.16276v1

ABSTRACT

This study aims at modeling the universal failure in preventing the outbreak of COVID-19 via real-world data from the perspective of complexity and network science. Through formalizing information heterogeneity and government intervention in the coupled dynamics of epidemic and infodemic spreading; first, we find that information heterogeneity and its induced variation in human responses significantly increase the complexity of the government intervention decision. The complexity results in a dilemma between the socially optimal intervention that is risky for the government and the privately optimal intervention that is safer for the government but harmful to the social welfare. Second, via counterfactual analysis against the COVID-19 crisis in Wuhan, 2020, we find that the intervention dilemma becomes even worse if the initial decision time and the decision horizon vary. In the short horizon, both socially and privately optimal interventions agree with each other and require blocking the spread of all COVID-19-related information, leading to a negligible infection ratio 30 days after the initial reporting time. However, if the time horizon is prolonged to 180 days, only the privately optimal intervention requires information blocking, which would induce a catastrophically higher infection ratio than that in the counter-factual world where the socially optimal intervention encourages early-stage information spread. These findings contribute to the literature by revealing the complexity incurred by the coupled infodemic-epidemic dynamics and information heterogeneity to the governmental intervention decision, which also sheds insight into the design of an effective early warning system against the epidemic crisis in the future.


Subject(s)
COVID-19
2.
Front Cardiovasc Med ; 9: 851214, 2022.
Article in English | MEDLINE | ID: covidwho-1793037

ABSTRACT

Background: This study aimed to investigate the impact of the COVID-19 pandemic on ST-segment elevation myocardial infarction (STEMI) care in China. Methods: We conducted a multicenter, retrospective cohort study in Hunan province (adjacent to the epidemic center), China. Consecutive patients presenting with STEMI within 12 h of symptom onset and receiving primary percutaneous coronary intervention, pharmaco-invasive strategy and only thrombolytic treatment, were enrolled from January 23, 2020 to April 8, 2020 (COVID-19 era group). The same data were also collected for the equivalent period of 2019 (pre-COVID-19 era group). Results: A total of 610 patients with STEMI (COVID-19 era group n = 286, pre-COVID-19 era group n = 324) were included. There was a decline in the number of STEMI admissions by 10.5% and STEMI-related PCI procedures by 12.7% in 2020 compared with the equivalent period of 2019. The key time intervals including time from symptom onset to first medical contact, symptom onset to door, door-to-balloon, symptom onset to balloon and symptom onset to thrombolysis showed no significant difference between these two groups. There were no significant differences for in-hospital death and major adverse cardiovascular events between these two groups. Conclusion: During the COVID-19 pandemic outbreak in China, we observed a decline in the number of STEMI admissions and STEMI-related PCI procedures. However, the key quality indicators of STEMI care were not significantly affected. Restructuring health services during the COVID-19 pandemic has not significantly adversely influenced the in-hospital outcomes.

3.
Chin J Nat Med ; 19(9): 693-699, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1576003

ABSTRACT

A chemical investigation on the fermentation products of Sanghuangporus sanghuang led to the isolation and identification of fourteen secondary metabolites (1-14) including eight sesquiterpenoids (1-8) and six polyphenols (9-14). Compounds 1-3 were sesquiterpenes with new structures which were elucidated based on NMR spectroscopy, high resolution mass spectrometry (HRMS) and electronic circular dichroism (ECD) data. All the isolates were tested for their stimulation effects on glucose uptake in insulin-resistant HepG2 cells, and cellular antioxidant activity. Compounds 9-12 were subjected to molecular docking experiment to primarily evaluate their anti-coronavirus (SARS-CoV-2) activity. As a result, compounds 9-12 were found to increase the glucose uptake of insulin-resistant HepG2 cells by 18.1%, 62.7%, 33.7% and 21.4% at the dose of 50 µmol·L-1, respectively. Compounds 9-12 also showed good cellular antioxidant activities with CAA50 values of 12.23, 23.11, 5.31 and 16.04 µmol·L-1, respectively. Molecular docking between COVID-19 Mpro and compounds 9-12 indicated potential SARS-CoV-2 inhibitory activity of these four compounds. This work provides new insights for the potential role of the medicinal mushroom S. sanghuang as drugs and functional foods.


Subject(s)
Agaricales , COVID-19 Drug Treatment , Polyphenols , Sesquiterpenes , Antioxidants/pharmacology , Basidiomycota , Glucose , Humans , Molecular Docking Simulation , Polyphenols/pharmacology , SARS-CoV-2 , Sesquiterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL